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Abstract
The symmetry transformation group of the bilinear negative Kadomtsev–
Petviashvili system is studied by means of a direct method. The Kac–Moody–
Virasoro-type Lie point symmetry algebra is found to be a special infinitesimal
form of the symmetry group.

PACS numbers: 02.30.Ik, 02.30.Rz

1. Introduction

It is interesting that the negative flows or negative integrable hierarchies have been rediscovered
several times and have attracted much attention of mathematicians and physicists [1–11]. The
first negative flow of the KdV equation

Rut = 0, (1)

where R is the recursion operator of the KdV equation, was first given by Ablowitz et al [1]
and the bilinear form of the system was provided by Hirota and Satsuma [2].

We have known that the negative KdV equation (1) is related to the Camassa–Holm
equation by a hodograph transformation [3]. Some types of exact solutions including the
multi-solitons for the negative KdV equation (1) have been found in [4].

Clearly, a special case of the first negative KdV equation is equivalent to the well-
known (1+1)-dimensional sine-Gordon (sG) (or sinh-Gordon (ShG)) equation up to a Miura
transformation. The Liouville equation can be considered as a commonly equivalent first
negative one of the modified KdV equation, the Caudry–Dodd–Gibbon–Sawada–Kotera
equation and the Kaup–Kupershmidt equation [5, 9].

In (1+1)-dimensions, there are some other different approaches to finding the integrable
negative hierarchies such as the inverse recursion operator approach [8, 9], the gauge
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transformations [12] and the inner parameter derivative approach [6, 13], etc. Various (1+1)-
dimensional negative systems have been obtained and their integrable properties have been
studied by some authors.

In [6], a special negative KdV hierarchy is written as

ut = ∂x

n∑
k=0

[(
∂2
x + u

)n−k
Pn

][(
∂2
x + u

)k
Pn

]
,

(2)(
∂2
x + u

)n+1
Pn = 0, n = 1, 2, . . . .

Similar to the KdV equation, a special negative Kadomtsev–Petviashvili (NKP) hierarchy
reads

ut = ∂x

n∑
k=0

[(
∂2
x + α∂y + u

)n−k
Pn

][(
∂2
x − α∂y + u

)k
P ∗

n

]
,

(
∂2
x + α∂y + u

)n+1
Pn = 0,

(
∂2
x − α∂y + u

)n+1
P ∗

n = 0, n = 1, 2, . . . ,

(3)

where α is a constant, which is also derived in [6].
We should remark that the special negative KdV flows (2) can also be derived from the

inverse recursion operator of the KdV equation though we still failed to obtain the special
NKP flows (3) by using the generalized recursion operator of the KP equation [14].

The first one of (3) (for n = 0) is

ut − (ψψ∗)x = 0, αψy +
(
∂2
x + u

)
ψ = 0, −αψ∗

y +
(
∂2
x + u

)
ψ∗ = 0. (4)

It is interesting and obvious to interpret that the NKP system (4) is just a special case of the
squared-eigenfunction symmetry flows of the KP hierarchy described in [15].

In fact, the (2+1)-dimensional (N+M)-component AKNS system [13] is an extension of
the squared-eigenfunction symmetry flows of the KP hierarchy. The Painlevé property, the
symmetry algebra and the variable separation solutions [16] of the (N+M)-component AKNS
system have been studied in [17].

Negative flows of the KP system may have other kinds of extensions such as the
Grassmannian description [18] and two-component extensions [19].

By the Miura transformation,

u = −φxx − αφy − φ2
x, (5)

ψ =
√

αS exp

(
−1

2

∫
1

S
sx e2φ dx

)
, S ≡ 1

α

∫
(sx e2φ)x dy, (6)

ψ∗ =
√

αS exp

(
1

2

∫
1

S
sx e2φ dx

)
, (7)

the NKP equation (4) can be changed to a (2+1)-dimensional sinh-Gordon equation [6](
αφy + φxx + φ2

x

)
yt

= (sx e2φ)xx, (8)

(2φx + ∂x)
(
φxt − 1

2C1 e2φ + 1
2C2 e−2φ

)
+ αφyt + α(s e2φ)x = 0. (9)

Remark. The Miura transformation (5) is completely the same as the transformation between
the usual KP equation and the modified KP equation. From equations (3) and (4), it is evident
that if α (or y) is pure imaginary then ψ∗ is just the complex conjugate of ψ . ψ∗ given by
(7) is not explicitly the complex conjugate of ψ of (6) because the Miura transformation (5)
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itself is not explicitly complex conjugate. The real condition of u and the complex conjugate
condition of ψ∗ with respect to ψ read

φ∗
xx + α∗φ∗

y∗ + (φ∗
x )

2 = φxx + αφy + φ2
x, (10)

[ln(α∗S∗ − αS)]x +
1

S∗ s∗
x e2φ∗

+
1

S
sx e2φ = 0. (11)

Obviously, the system (8) and (9) will reduce to the (1+1)-dimensional sinh-Gordon
equation when the field φ is y-independent and s = 0.4

Without loss of generality, we can choose

2φ = ω, C1 = C2 = 1
2 , α = 1, s = θ,

and thus the system of equations (8) and (9) becomes

(ωxt − sinh ω)x + ωx(ωxt − sinh ω) + ωyt = −2(θ eω)x, (12)

2(θx eω)xx +
(
ωy + ωxx + 1

2ω2
x

)
yt

= 0, (13)

which is different from the complicated known one [21] because of the space {x, y} asymmetric
property. For the ShG system (12) and (13), the authors of [20] have presented us its bilinear
form (

Dy + D2
x

)
f · g = 0, (14)

Dt

(
Dy + D2

x

)
f · g = 0, (15)

in which f ≡ f (x, y, t), g ≡ g(x, y, t), and the operators Dt,Dx and Dy are defined as

Dm
x Dn

yD
k
t f · g = ∂m

a ∂n
b ∂k

c f (x + a, y + b, t + c)g(x − a, y − b, t − c)
∣∣
a=b=c=0,

which were first introduced by Hirota [27] with f, g, ω and θ being related by

ω(x, y, t) = 2 ln
f (x, y, t)

g(x, y, t)
(16)

θ(x, y, t) = 2
∫ x

−∞
[ln g(ξ, y, t)]yt

[
g(ξ, y, t)

f (ξ, y, t)

]2

dξ. (17)

We should interpret that the bilinear system may have some different names because
it may have some different types of nonlinear equations, such as the negative KP equation,
the (2+1)-dimensional (1+1)-component AKNS system, the (2+1)-dimensional Broer–Kaup
system [22] and the (2+1)-dimensional sinh-Gordon equation.

It should also be mentioned that the NKP system possesses a more general form(
Dy + D2

x

)
f · g = 0, (18)

Dt

(
Dy + D2

x

)
f · g + q(y, t)Dxf · g = 0, (19)

if a nonzero boundary term, θ(−∞, y, t) = q(y, t) is added to the transformation (17).
Equations (18) and (19) are just equations (10) and (11) of [30].

4 Note in this special y-independent case, the original eigenfunction variables ψ and ψ∗ = ψ should be related to φ

by ψxx = (φxx + φ2
x )ψ instead of the undefined equations (6) and (7).
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Actually, the bilinear form given by Hu et al [20] is corresponding to q(y, t) = 2, i.e.,
equations (5) and (6) of [30]. On the other hand, if one takes y = x, q = 0 and/or q = 1 in
(18) and (19), it is just two known bilinear forms of the classical Bossinesq equation[24]. In
this paper, we focus our attention on the q = 0 case for simplicity.

The knowledge of the symmetries is very useful to enhance our understanding of complex
physical phenomena, to simplify and even completely solve the complicated problems.
Furthermore, the study of symmetries has been manifested as one of the most important and
powerful methods in almost every branch of science especially in physics and mathematics.
It is particularly fundamental to find the symmetries of a nonlinear equation and then to
construct its Lie algebra in the development of the theory of the integrable systems because of
the existence of infinitely many symmetries.

The symmetry groups of a nonlinear system are commonly obtained by using the Lie’s
first fundamental theorem; however, it is rather difficult to be fulfilled due to complicated
calculations. Recently, Lou and Ma proposed a direct method for deriving symmetry groups
of a nonlinear system in [23]. The new direct method can be used not only to find the
equivalent while much simpler and explicit Lie point symmetry groups, but to present the
non-Lie symmetry groups as well.

In section 2 of this paper, we apply the direct method developed in [23] to obtain the
transformation group of the NKP equations (14) and (15) (or equivalently, (20) and (21)), and
the Lie point symmetries are presented in section 3.

2. Transformation group by the direct method

The system of the differential equations (14) and (15) is equivalent to

fyg − fgy + fxxg − 2fxgx + fgxx = 0, (20)

(g∂t − gt )(fy + fxx) + (f ∂t − ft )(gy − gxx) − 2(fxtgx − fxgxt ) = 0. (21)

To find a complete point symmetry transformation group of (20) and (21), i.e. (14) and
(15), one should find the general transformations in the following form,

f = f1(x, y, t, F (ξ, η, τ ),G(ξ, η, τ )),
(22)

g = g1(x, y, t, F (ξ, η, τ ),G(ξ, η, τ )),

where ξ, η and τ are functions of x, y, t, f and g, F ≡ F(ξ, η, τ ) and G ≡ G(ξ, η, τ ) are
also solutions of the bilinear NKP equation in the variables ξ, η and τ , i.e.,

FηG − FGη + FξξG − 2FξGξ + FGξξ = 0, (23)

(G∂τ − Gτ)(Fη + Fξξ ) + (F∂τ − Fτ )(Gη − Gξξ ) − 2(FξτGξ − FξGξτ ) = 0. (24)

Fortunately, similar to the usual KP case in [23], we can prove that for the bilinear NKP
system it is enough to take

f = β1F(ξ, η, τ ), g = β2G(ξ, η, τ ) (25)

instead of (22), where β1, β2 and ξ , η, τ are functions of {x, y, t}.
To prove the conclusion (25), one should submit the general expression (22) to the bilinear

equations (20) and (21). After eliminating Gη and Fξξτ and their higher derivatives via (23)
and (24) and vanishing all the coefficients of the different terms of the derivatives of the
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functions F and G, one can get 409 complicated determining equations for five functions
f1 ≡ f1(x, y, t, F,G), g1 ≡ g1(x, y, t, F,G), ξ, η and τ . Five of them read as

ξ 2
x τ 2

t (g1f1FF − f1g1FF ) = 0, ξ 2
x τ 2

t (g1f1GG − f1g1GG) = 0,

ξ 2
x (g1f1FF + f1g1FF − 2f1F g1F ) = 0, ξ 2

x (g1f1GG + f1g1GG − 2f1Gg1G) = 0,

ηy[F(g1f1F − f1g1F ) + G(f1g1G − g1f1G)] = 0

which have only three types of solutions:

Case 1.

f1 = β1(x, y, t)F, g1 = β2(x, y, t)G.

Case 2.

f1 = a1(x, y, t)G, g1 = a2(x, y, t)F.

Case 3.

f1 = b(x, y, t)g1

for ξxηyτt �= 0. When ξxηyτt = 0, we can reasonably prove that one cannot find any
nontrivial symmetry transformations.

If substituting the third case, f1 = b(x, y, t)g1, into the remaining determining equations,
one can find that f1F = f1G = 0 which will also result in no symmetry transformations.

The first case is just the result we want to prove while the second result is only related to
the discrete symmetry transformation of the original model {F,G, y} → {G,F,−y}. This
situation will be included in the final group transformation theorem 1 (see later). Therefore,
the conclusion (25) is proved.

Substituting (25) into equation (20) with F and G satisfying the negative KP equation
yields:

2β1β2ξxτxFGFξτ + W1(x, y, t, F, Fξ , . . . , Fη, . . . ,Gξ ,Gη, . . . ,Gξη) = 0, (26)

where W1 is a complicated Fξτ (and its higher order derivatives) independent function.
Equation (26) exists for an arbitrary solution F only when all the coefficients of the polynomials
of the derivatives of F and G are zero.

Obviously, β1 and β2 should not be zero, and ξ is the transformation of x which requires
ξx �= 0. Since there is no nontrivial solution for τx �= 0, we must have

τx = 0, i.e. τ ≡ τ(y, t). (27)

Under the condition (27), equation (26) is reduced to

2ηxξxβ2β1F
2Gξη + W2(x, y, t, F, Fξ , . . . , Fη, . . . ,Gξ ,Gη, . . . ,Gξτ ) = 0, (28)

with W2 a complicated Gξη independent function. Obviously, the only possible case to vanish
the coefficient of Gξη is

ηx = 0, i.e. η ≡ η(y, t). (29)

Under the above condition, a simplified form of equation (28) can now be completely
written:{
[2ξx(β1β2x − β1xβ2) + β1β2(ξxx − ξy)]Gξ + β1β2

(
ξ 2
x − ηy

)
Gη − β1β2τyGτ

+ (β1xxβ2 − 2β1xβ2x + β1β2xx + β1yβ2 − β1β2y)G
}
F 2 +

{
[β1β2(ξxx + ξy)

+ ξx(β1xβ2 − β1β2x)]Fξ + β1β2
(
ηy − ξ 2

x

)
Fη + β1β2τyFτ

}
FG = 0. (30)
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Equation (30) is true for arbitrary solutions F and G only when all the coefficients of the
polynomials of the derivatives of F and G are zero, which leads to a system of determining
equations of the unknown functions

β1β2τy = 0, (31)

β1β2
(
ξ 2
x − ηy

) = 0, (32)

β1β2(ξxx + ξy) + ξx(β1xβ2 − β1β2x) = 0, (33)

2ξx(β1β2x − β1xβ2) + β1β2(ξxx − ξy) = 0. (34)

It is not difficult to obtain the general solutions of the determining equations (31)–(34).
The results are

τ ≡ τ(t), η ≡ η(y, t), (35)

ξ = ξ1(y, t)x + f1(y, t), (36)

ηy = ξ1(y, t)2, (37)

β1 = b1(y, t)β2 exp

[
− x

4ξ1
(2f1y + ξ1yx)

]
(38)

β2 = b3(y, t) exp

[
− 1

96

ξ1ξ1yy − 2ξ 2
1y

ξ 2
1

x4 +
1

24

ξ1ξ1yy − 2f1yξ1y

ξ 2
1

x3

− 1

16

b1f
2
1y + 4b1yξ

2
1 − 2b1ξ1yξ1

ξ 2
1

x2 − b2(y, t)x

]
, (39)

where ξ1, f1, b1, b2 and b3 are functions of {y, t} which should be further determined through
equation (21). Substituting (25) and the known results into equation (21) we have

2β2
1β2

2ηtξ
2
1 GFFξξη + W3(x, y, t, F, Fξ , . . . , Fη, . . . ,Gξ ,Gη, . . . ,Gξτ ) = 0, (40)

where W3 is an Fξξη independent function. Evidently, (40) is true only for the coefficient of
Fξξη being zero which means only

ηt = 0, i.e. η ≡ η(y), (41)

for ξ1 cannot be zero on account of (36). Thus equation (40) reduces further to

2β2
1β2

2ξ 2
1 (ξ1t x + f1t )GFFξξξ + W4(x, y, t, F, Fξ , . . . , Fη, . . . , Gξ ,Gη, . . . ,Gξτ ) = 0, (42)

with W4 being an Fξξξ independent function. Thus there is no choice but

ξ1t = 0, i.e. ξ1(y, t) ≡ ξ1(y),

f1t = 0, i.e. f1(y, t) ≡ f1(y),
(43)

which lead equation (42) to be

b3
(
ξ1b1b1t b1yy − 2ξ1b1t b

2
1y + 2ξ1b1b1yb1yt − ξ1b

2
1b1yyt + 2ξ1yb

2
1b1yt

)
GFx2

− b1b
2
3d

(−4b2
1ξ1yb2t + 4b2

1b2yt ξ1 − 2b1ytf1yb1 + 2b1t b1yf1y

)
GFx

− b1
(−4b2

1b3ξb3yt − 4b2
1b

2
3f1yb2t + 4b2

1b3yb3t ξ

− 2b2
3b1ytb1ξ1 + 2b2

3ξ1b1t b1y

)
GF

− 4ξ 2
1 b1b

2
3(b1yb1t − b1b1yt )(GξF − FξG)x

+ 2ξ 2
1 b3

1b
2
34b2t (GξF − FξG) = 0, (44)
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and then we have the further determining equations

4b2t = 0, (45)

b1yb1t − b1b1yt = 0, (46)

−2ξ1b1t b
2
1y + ξ1b1b1t b1yy + 2ξ1b1b1yb1yt − ξ1b

2
1b1yyt + 2ξ1yb

2
1b1yt = 0, (47)

−4b2
1ξ1yb2t + 4b2

1b2yt ξ1 − 2b1ytf1yb1 + 2b1t b1yf1y = 0, (48)

−4b2
1b3ξb3yt − 4b2

1b
2
3f1yb2t + 4b2

1b3yb3t ξ − 2b2
3b1ytb1ξ1 + 2b2

3ξ1b1t b1y = 0. (49)

The general solutions of equations (45)–(49) are

b1(y, t) = h2(y)r0(t), (50)

b2(y, t) ≡ b2(y), (51)

b3(y, t) = h1(y)τ0(t), (52)

with h1, h2 and b2 being arbitrary functions of y, and r0 and τ0 being arbitrary functions of t.
In summary, after considering the possible discrete transformation {y, f, g} → {−y, g, f }

discussed before, the following theorem holds:

Theorem 1. If {F = F0(x, y, t),G = G0(x, y, t)} is a solution of the bilinear negative KP
equations (20) and (21), then so are {F1,G1} and {F2,G2} with

F1 = r0(t)τ0(t)h1(y)h2(y) exp

[
x4

96ξ 2
1

(
ξ1yyξ1 − 2ξ 2

1y

)
+

x3

24ξ 2
1

(f1yyξ1 − 2f1yξ1y)

− x2

16h2ξ
2
1

(
f 2

1yh2 + 2ξ1yξ1h2 + 4h2yξ
2
1

) − x

2ξ1
(2ξ1b2 + f1y)

]
F0(ξ1(y)x

+ f1(y), η(y), τ (t)), (53)

G1 = τ0(t)h1(y) exp

[
x4

96ξ 2
1

(
ξ1yyξ1 − 2ξ 2

1y

)
+

x3

24ξ 2
1

(f1yyξ1 − 2f1yξ1y)

− x2

16h2ξ
2
1

(
f 2

1yh2 − 2ξ1yξ1h2 + 4h2yξ
2
1

) − b2(y)x

]
×G0(ξ1(y)x + f1(y), η(y), τ (t)), (54)

F2 = r0(t)τ0(t)h1(y)h2(y) exp

[
x4

96ξ 2
1

(
ξ1yyξ1 − 2ξ 2

1y

)
+

x3

24ξ 2
1

(f1yyξ1 − 2f1yξ1y)

− x2

16h2ξ
2
1

(
f 2

1yh2 − 2ξ1yξ1h2 − 4h2yξ
2
1

) − x

2ξ1
(2ξ1b2 − f1y)

]
G0(ξ1(y)x

+ f1(y), η(y), τ (t)), (55)

G2 = τ0(t)h1(y) exp

[
x4

96ξ 2
1

(
ξ1yyξ1 − 2ξ 2

1y

)
+

x3

24ξ 2
1

(f1yyξ1 − 2f1yξ1y)

− x2

16h2ξ
2
1

(
f 2

1yh2 + 2ξ1yξ1h2 − 4h2yξ
2
1

) − b2(y)x

]
×F0(ξ1(y)x + f1(y), η(y), τ (t)), (56)

7
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where ξ1, b2, h1, h2 and f1 are arbitrary functions of y, r0, τ0 and τ ≡ τ(t) are arbitrary
functions of t, while η ≡ η(y) and ξ1 are linked by

ηy = ξ 2
1 , (57)

or equivalently

ξ1 = ±√
ηy. (58)

The group theorem 1 indicates the full Lie point symmetry group, G, of the model can be
divided into two parts

G = S ⊗ D,

where S stands for the Lie symmetry group expressed by (53) and (54) with the negative sign
of (58) while D stands for a discrete group,

D = {I, σx, σy, σxσy},
where I is an identity transformation and σx and σy are related to two discrete transformations

σx : {x, y, t, f, g} −→ {−x, y, t, f, g},
and

σy : {x, y, t, f, g} −→ {x,−y, t, g, f }.
In other words the full Lie point symmetry group of the model is divided into four

sectors S, σxS, σyS and σxσyS. This kind of phenomena has also been found for some
other models [23, 25]. One should be careful in the practical application of theorem 1, the
first step is to change the independent variables {x, y, t} of the original solution {F0,G0} to
{ξ, η, τ } ≡ {ξ1(y)x + f1(y), η(y), τ (t)} and then multiply the changed functions by some
necessary factors given in the theorem.

Applying the theorem to some simple exact solutions without arbitrary functions, one
may obtain some types of novel generalized solutions with some arbitrary functions. In the
following, we just present one special solution example.

Example 1. It is quite trivial that the bilinear equation system of equations (14) and (15)
possesses a special simple solution

F0 = 1, (59)

G0 = 1 + τ1 ek1x+k2
1y + τ2 ek2x+k2

2y, (60)

where k1, k2 are arbitrary constants and τ1, τ2 are arbitrary functions of t. Correspondingly,
the special solutions of the ShG equations (12) and (13) have the form

ω0 = −2 ln(1 + τ1 ek1x+k2
1y + τ2 ek2x+k2

2y), (61)

θ0 = 2k1τ1t ek1x+k2
1y + 2k2τ2t ek2x+k2

2y

− 2(k1 − k2)(τ1τ2t − τ2τ1t ) e(k1+k2)x+(k2
1 +k2

2)y . (62)

Using the transformation theorem to the above special solution we have the following new
special solution of the NKP equation,

F = r0(t)τ0(t)h1(y)h2(y) exp

[
x4

96ξ 2
1

(
ξ1yyξ1 − 2ξ 2

1y

)
+

x3

24ξ 2
1

(f1yyξ1 − 2f1yξ1y)

− x2

16h2ξ
2
1

(
f 2

1yh2 + 2ξ1yξ1h2 + 4h2yξ
2
1

) − x

2ξ1
(2ξ1b2 + f1y)

]
, (63)

8
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G = τ0(t)h1(y) exp

[
x4

96ξ 2
1

(
ξ1yyξ1 − 2ξ 2

1y

)
+

x3

24ξ 2
1

(f1yyξ1 − 2f1yξ1y)

− x2

16h2ξ
2
1

(
f 2

1yh2 − 2ξ1yξ1h2 + 4h2yξ
2
1

) − b2(y)x

]

× (1 + τ1 ek1(ξ1x+f1)+k2
1η + τ2 ek2(ξ1x+f1)+k2

2η), (64)

where we have rewritten τ1(τ (t)) and τ2(τ (t)) as τ1(t) and τ2(t) because the original τ1 and
τ2 are arbitrary functions of t.

Accordingly, the new solution for the ShG system reads

ω = 2 ln
r0h2 exp

[− 1
4xξ−1

1 (ξ1yx + 2f1y)
]

1 + τ1 ek1(ξ1x+f1)+k2
1η + τ2 ek2(ξ1x+f1)+k2

2η
, (65)

θ = 2ξ1 exp
[

1
2xξ−1

1 (ξ1yx + f1y)
]

h2
2r

2
0

{
k1τ1te

k1(ξ1x+f1)+k2
1η + k2τ2t ek2(ξ1x+f1)+k2

2η

− (k1 − k2)(τ1τ2t − τ2τ1t ) e(k1+k2)(ξ1x+f1)+(k2
1 +k2

2)η
}
. (66)

We believe that this type of solution can also be obtained by means of other methods (say, the
dressing method), but the detailed procedure might be rather complicated.

3. The Kac–Moody–Virasoro structure of the Lie point symmetry algebra

In the traditional Lie group theory, one always tries to find the Lie point symmetries first and
then use the Lie’s first fundamental theorem to obtain the symmetry transformation group.
Conversely, in the last section we are fortunate to obtain the symmetry transformation group
in the first place by a simple direct method. Once the transformation group is known, the Lie
point symmetries and the related Lie symmetry algebra can be obtained straightforwardly by
a more simple limiting procedure (which can also be obtained by other standard methods in
[30]).

For the bilinear NKP system (14) and (15), the corresponding Lie point symmetries can
be derived from the symmetry group transformation theorem presented in the last section by
setting

η(y) = y + εe(y), τ (t) = t + εC(t),

f1(y) = εd(y), r0(t) = 1 − εA(t),

b2(y) = ε(b(y) − 1
4d ′(y)), h1(y) = 1 − ε(a(y) − 1

2c(y)),

τ0(t) = 4εB(t), h2(y) = 1 − εc(y),

and

ξ1(y) =
√

1 + εe′(y),

with ε being an infinitesimal parameter, primes denoting the derivatives with respect to y and
dots over the functions (will appear later) denoting the derivatives with respect to t. Under the
above selections, (53) and (54) become

f = F + εσ f (F ) + O(ε2),

σ f = C(t)Ft + e(y)Fy +

(
d(y) +

1

2
xe′(y)

)
Fx +

[
x4

192
e′′′(y) +

x3

24
d ′′(y)

9



J. Phys. A: Math. Theor. 41 (2008) 275204 M Jia et al

+
x2

4

(
c′(y) − 1

4
e′′(y)

)
−

(
1

4
d ′(y) + b(y)

)
x

− a(y) − A(t) − B(t) − 1

2
c(y)

]
F, (67)

g = G + εσ g(G) + O(ε2),

σ g = C(t)Gt + e(y)Gy +

(
d(y) +

1

2
xe′(y)

)
Gx +

[
x4

192
e′′′(y) +

x3

24
d ′′(y)

+
x2

4

(
c′(y) +

1

4
e′′(y)

)
+

(
1

4
d ′(y) − b(y)

)
x − a(y) − B(t) +

1

2
c(y)

]
G,

(68)

which means that the bilinear NKP system possesses the Lie point symmetries

σ =
(

σf

σ g

)
. (69)

The equivalent vector expression of the above symmetry reads

V = V1(A(t)) + V2(B(t)) + V3(C(t))

+ W1(a(y)) + W2(b(y)) + W3(c(y)) + W4(d(y)) + W5(e(y)), (70)

with

V1(A(t)) = A(t)F
∂

∂F
, (71)

V2(B(t)) = B(t)

(
F

∂

∂F
+ G

∂

∂G

)
, (72)

V3(C(t)) = C(t)
∂

∂t
, (73)

W1(a(y)) = a(y)

(
F

∂

∂F
+ G

∂

∂G

)
, (74)

W2(b(y)) = xb(y)

(
F

∂

∂F
+ G

∂

∂G

)
, (75)

W3(c(y)) = c(y)F
∂

∂F
− 1

4
(2c(y) + x2c′(y))

(
F

∂

∂F
+ G

∂

∂G

)
, (76)

W4(d(y)) = d(y)
∂

∂x
+

1

2
xd ′(y)F

∂

∂F
− 1

24
(6xd ′(y) + x3d ′′(y))

(
F

∂

∂F
+ G

∂

∂G

)
, (77)

W5(e(y)) = e(y)
∂

∂y
+

1

2
xe′(y)

∂

∂x
− x4

192
e′′′(y)

(
F

∂

∂F
+ G

∂

∂G

)

+
x2

16
e′′(y)

(
F

∂

∂F
− G

∂

∂G

)
. (78)

It is easy to verify that the symmetries Vi,Wj , i = 1, 2, 3, j = 1, 2, . . . , 5, constitute an
infinite-dimensional Kac–Moody–Virasoro [29] type symmetry algebra S with the following

10
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nonzero commutation relations:

[V3(C), V1(A)] = V1(CȦ), (79)

[V3(C), V2(B)] = V2(CḂ), (80)

[V3(C1), V3(C2)] = V3(C1Ċ2 − C2Ċ1), (81)

[W4(d),W2(b)] = W1(bd), (82)

[W3(c),W4(d)] = 1
2W1(dc′), (83)

[W4(d1),W4(d2)] = 1
2W3(d1d

′
2 − d2d

′
1), (84)

[W5(e),W1(a)] = W1(ea
′), (85)

[W5(e),W2(b)] = W2
(
eb′ + 1

2be′), (86)

[W5(e),W3(c)] = W3(ec
′), (87)

[W5(e),W4(d)] = W4(ed
′), (88)

[W5(e),W4(d)] = W4
(
ed ′ − 1

2de′), (89)

[W5(e1),W5(e2)] = W5(e1e
′
2 − e2e

′
1). (90)

It should be emphasized that the algebra is infinite dimensional because the generators
V1, V2, V3,W1,W2,W3 and W4 all contain arbitrary functions. The algebra is closed because
all the commutators can be expressed by the generators belonging to the generator set usually
with different functions and the generators contained different functions belonging to the set.

From (79)–(90), we easily see that S1 = {V1, V2}, S2 = {W1,W2,W3,W4}, S3 = {V3}
and S4 = {W5} are four subalgebras of the whole Lie point symmetry algebra S, S1 is a
commutative algebra, S2 is a special type of Kac–Moody algebra, and S3 and S4 are two
generalized Witt algebras which are also called centerless Virasoro algebras.

If one applies the traditional Lie group theory to the bilinear NKP system (14) and (15),
the same Lie algebra can be found given in this section [30]. However, if one tries to obtain
the Lie point symmetry group starting from the Lie symmetry algebra by using the Lie’s first
fundamental theorem, we believe a much more complicated form is presented.

4. Summary and discussion

In summary, the bilinear NKP equation is studied, which is an integrable (2+1)-dimensional
extension of the well-known sinh-Gordon (or sine-Gordon) equation and the Broer–Kaup
equation. The model possesses various interesting and good properties, such as infinitely
many symmetries. In this paper, we found that the model possesses two infinite-
dimensional Kac–Moody–Virasoro-type symmetry algebras constituted by {V1, V2, V3} and
{W1,W2,W3,W4,W5}, respectively.

In the traditional Lie symmetry group theory, one usually first finds the Lie point symmetry
algebra by the prolongation approach and then obtains the Lie symmetry group via solving
the related initial value problem based on the Lie’s first fundamental theorem. However, it is
rather difficult to find the general Lie point symmetry algebras and the Lie symmetry groups
by means of the traditional method. Furthermore, even if the symmetry transformation group
can be derived via the traditional method, the results usually are too complicated to be used to
yield the general group invariant solutions from a special one.

11
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In this paper, applying the direct method provided in [23] to the bilinear NKP equation,
the simple symmetry transformation group is presented first and then the related Lie point
symmetries (which can also be obtained by other standard methods [30]) are provided simply
by a limiting procedure.

Because of the importance of the integrable models in the nonlinear science, it is worth
paying more attention to the NKP equation, the NKP hierarchy and other negative integrable
hierarchies.
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